Enterprise Session Border Controller Oracle Enterprise Session Border Controller

Do you want an email whenever new security vulnerabilities are reported in Oracle Enterprise Session Border Controller?

By the Year

In 2024 there have been 0 vulnerabilities in Oracle Enterprise Session Border Controller . Last year Enterprise Session Border Controller had 1 security vulnerability published. Right now, Enterprise Session Border Controller is on track to have less security vulnerabilities in 2024 than it did last year.

Year Vulnerabilities Average Score
2024 0 0.00
2023 1 4.30
2022 3 6.13
2021 4 7.43
2020 2 6.00
2019 2 6.10
2018 0 0.00

It may take a day or so for new Enterprise Session Border Controller vulnerabilities to show up in the stats or in the list of recent security vulnerabilties. Additionally vulnerabilities may be tagged under a different product or component name.

Recent Oracle Enterprise Session Border Controller Security Vulnerabilities

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: Web UI)

CVE-2023-22083 4.3 - Medium - October 17, 2023

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: Web UI). Supported versions that are affected are 9.0-9.2. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTPS to compromise Oracle Enterprise Session Border Controller. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Enterprise Session Border Controller accessible data. CVSS 3.1 Base Score 4.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N).

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: Log)

CVE-2022-21383 4.3 - Medium - January 19, 2022

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: Log). Supported versions that are affected are 8.4 and 9.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Enterprise Session Border Controller. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Enterprise Session Border Controller. CVSS 3.1 Base Score 4.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L).

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: WebUI)

CVE-2022-21382 7.7 - High - January 19, 2022

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: WebUI). Supported versions that are affected are 8.4 and 9.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Enterprise Session Border Controller. While the vulnerability is in Oracle Enterprise Session Border Controller, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Enterprise Session Border Controller accessible data. CVSS 3.1 Base Score 7.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:N/I:H/A:N).

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: WebUI)

CVE-2022-21381 6.4 - Medium - January 19, 2022

Vulnerability in the Oracle Enterprise Session Border Controller product of Oracle Communications (component: WebUI). Supported versions that are affected are 8.4 and 9.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Enterprise Session Border Controller. While the vulnerability is in Oracle Enterprise Session Border Controller, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Enterprise Session Border Controller accessible data as well as unauthorized read access to a subset of Oracle Enterprise Session Border Controller accessible data. CVSS 3.1 Base Score 6.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:N).

In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt()

CVE-2021-3711 9.8 - Critical - August 24, 2021

In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k).

Classic Buffer Overflow

ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure

CVE-2021-3712 7.4 - High - August 24, 2021

ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).

Out-of-bounds Read

A security issue in nginx resolver was identified, which might

CVE-2021-23017 7.7 - High - June 01, 2021

A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact.

off-by-five

In Apache Commons IO before 2.7, When invoking the method FileNameUtils.normalize with an improper input string, like "//

CVE-2021-29425 4.8 - Medium - April 13, 2021

In Apache Commons IO before 2.7, When invoking the method FileNameUtils.normalize with an improper input string, like "//../foo", or "\\..\foo", the result would be the same value, thus possibly providing access to files in the parent directory, but not further above (thus "limited" path traversal), if the calling code would use the result to construct a path value.

Directory traversal

The X.509 GeneralName type is a generic type for representing different types of names

CVE-2020-1971 5.9 - Medium - December 08, 2020

The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w).

NULL Pointer Dereference

In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML

CVE-2020-11022 6.1 - Medium - April 29, 2020

In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0.

XSS

A vulnerability was found in Hibernate-Validator

CVE-2019-10219 6.1 - Medium - November 08, 2019

A vulnerability was found in Hibernate-Validator. The SafeHtml validator annotation fails to properly sanitize payloads consisting of potentially malicious code in HTML comments and instructions. This vulnerability can result in an XSS attack.

XSS

jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {},

CVE-2019-11358 6.1 - Medium - April 20, 2019

jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype.

Prototype Pollution

Stay on top of Security Vulnerabilities

Want an email whenever new vulnerabilities are published for Juniper Networks Junos or by Oracle? Click the Watch button to subscribe.

Oracle
Vendor

subscribe