OpenSSL OpenSSL Popular Crypto Implementation Library

stack.watch can email you when security vulnerabilities are reported in OpenSSL. You can add multiple products that you use with OpenSSL to create your own personal software stack watcher.

By the Year

In 2021 there have been 1 vulnerability in OpenSSL with an average score of 7.5 out of ten. Last year OpenSSL had 3 security vulnerabilities published. If vulnerabilities keep coming in at the current rate, it appears that number of security vulnerabilities in OpenSSL in 2021 could surpass last years number. However, the average CVE base score of the vulnerabilities in 2021 is greater by 1.80.

Year Vulnerabilities Average Score
2021 1 7.50
2020 3 5.70
2019 8 5.39
2018 10 5.70

It may take a day or so for new OpenSSL vulnerabilities to show up. Additionally vulnerabilities may be tagged under a different product or component name.

Latest OpenSSL Security Vulnerabilities

OpenSSL 1.0.2 supports SSLv2

CVE-2021-23839 7.5 - High - February 16, 2021

OpenSSL 1.0.2 supports SSLv2. If a client attempts to negotiate SSLv2 with a server that is configured to support both SSLv2 and more recent SSL and TLS versions then a check is made for a version rollback attack when unpadding an RSA signature. Clients that support SSL or TLS versions greater than SSLv2 are supposed to use a special form of padding. A server that supports greater than SSLv2 is supposed to reject connection attempts from a client where this special form of padding is present, because this indicates that a version rollback has occurred (i.e. both client and server support greater than SSLv2, and yet this is the version that is being requested). The implementation of this padding check inverted the logic so that the connection attempt is accepted if the padding is present, and rejected if it is absent. This means that such as server will accept a connection if a version rollback attack has occurred. Further the server will erroneously reject a connection if a normal SSLv2 connection attempt is made. Only OpenSSL 1.0.2 servers from version 1.0.2s to 1.0.2x are affected by this issue. In order to be vulnerable a 1.0.2 server must: 1) have configured SSLv2 support at compile time (this is off by default), 2) have configured SSLv2 support at runtime (this is off by default), 3) have configured SSLv2 ciphersuites (these are not in the default ciphersuite list) OpenSSL 1.1.1 does not have SSLv2 support and therefore is not vulnerable to this issue. The underlying error is in the implementation of the RSA_padding_check_SSLv23() function. This also affects the RSA_SSLV23_PADDING padding mode used by various other functions. Although 1.1.1 does not support SSLv2 the RSA_padding_check_SSLv23() function still exists, as does the RSA_SSLV23_PADDING padding mode. Applications that directly call that function or use that padding mode will encounter this issue. However since there is no support for the SSLv2 protocol in 1.1.1 this is considered a bug and not a security issue in that version. OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.0.2y (Affected 1.0.2s-1.0.2x).

CVE-2021-23839 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality, a high impact on integrity, and no impact on availability.

Inadequate Encryption Strength

The X.509 GeneralName type is a generic type for representing different types of names

CVE-2020-1971 5.9 - Medium - December 08, 2020

The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w).

CVE-2020-1971 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

NULL Pointer Dereference

The Raccoon attack exploits a flaw in the TLS specification

CVE-2020-1968 3.7 - Low - September 09, 2020

The Raccoon attack exploits a flaw in the TLS specification which can lead to an attacker being able to compute the pre-master secret in connections which have used a Diffie-Hellman (DH) based ciphersuite. In such a case this would result in the attacker being able to eavesdrop on all encrypted communications sent over that TLS connection. The attack can only be exploited if an implementation re-uses a DH secret across multiple TLS connections. Note that this issue only impacts DH ciphersuites and not ECDH ciphersuites. This issue affects OpenSSL 1.0.2 which is out of support and no longer receiving public updates. OpenSSL 1.1.1 is not vulnerable to this issue. Fixed in OpenSSL 1.0.2w (Affected 1.0.2-1.0.2v).

CVE-2020-1968 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a small impact on confidentiality, a small impact on integrity and availability.

Inadequate Encryption Strength

Server or client applications

CVE-2020-1967 7.5 - High - April 21, 2020

Server or client applications that call the SSL_check_chain() function during or after a TLS 1.3 handshake may crash due to a NULL pointer dereference as a result of incorrect handling of the "signature_algorithms_cert" TLS extension. The crash occurs if an invalid or unrecognised signature algorithm is received from the peer. This could be exploited by a malicious peer in a Denial of Service attack. OpenSSL version 1.1.1d, 1.1.1e, and 1.1.1f are affected by this issue. This issue did not affect OpenSSL versions prior to 1.1.1d. Fixed in OpenSSL 1.1.1g (Affected 1.1.1d-1.1.1f).

CVE-2020-1967 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

NULL Pointer Dereference

There is an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli

CVE-2019-1551 5.3 - Medium - December 06, 2019

There is an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against 2-prime RSA1024, 3-prime RSA1536, and DSA1024 as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH512 are considered just feasible. However, for an attack the target would have to re-use the DH512 private key, which is not recommended anyway. Also applications directly using the low level API BN_mod_exp may be affected if they use BN_FLG_CONSTTIME. Fixed in OpenSSL 1.1.1e (Affected 1.1.1-1.1.1d). Fixed in OpenSSL 1.0.2u (Affected 1.0.2-1.0.2t).

CVE-2019-1551 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have a small impact on confidentiality, a small impact on integrity and availability.

Information Leak

OpenSSL 1.1.1 introduced a rewritten random number generator (RNG)

CVE-2019-1549 5.3 - Medium - September 10, 2019

OpenSSL 1.1.1 introduced a rewritten random number generator (RNG). This was intended to include protection in the event of a fork() system call in order to ensure that the parent and child processes did not share the same RNG state. However this protection was not being used in the default case. A partial mitigation for this issue is that the output from a high precision timer is mixed into the RNG state so the likelihood of a parent and child process sharing state is significantly reduced. If an application already calls OPENSSL_init_crypto() explicitly using OPENSSL_INIT_ATFORK then this problem does not occur at all. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c).

CVE-2019-1549 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have a small impact on confidentiality, a small impact on integrity and availability.

Use of Insufficiently Random Values

In situations where an attacker receives automated notification of the success or failure of a decryption attempt an attacker, after sending a very large number of messages to be decrypted, can recover a CMS/PKCS7 transported encryption key or decrypt any RSA encrypted message

CVE-2019-1563 3.7 - Low - September 10, 2019

In situations where an attacker receives automated notification of the success or failure of a decryption attempt an attacker, after sending a very large number of messages to be decrypted, can recover a CMS/PKCS7 transported encryption key or decrypt any RSA encrypted message that was encrypted with the public RSA key, using a Bleichenbacher padding oracle attack. Applications are not affected if they use a certificate together with the private RSA key to the CMS_decrypt or PKCS7_decrypt functions to select the correct recipient info to decrypt. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

CVE-2019-1563 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a small impact on confidentiality, a small impact on integrity and availability.

Missing Encryption of Sensitive Data

Normally in OpenSSL EC groups always have a co-factor present and this is used in side channel resistant code paths

CVE-2019-1547 4.7 - Medium - September 10, 2019

Normally in OpenSSL EC groups always have a co-factor present and this is used in side channel resistant code paths. However, in some cases, it is possible to construct a group using explicit parameters (instead of using a named curve). In those cases it is possible that such a group does not have the cofactor present. This can occur even where all the parameters match a known named curve. If such a curve is used then OpenSSL falls back to non-side channel resistant code paths which may result in full key recovery during an ECDSA signature operation. In order to be vulnerable an attacker would have to have the ability to time the creation of a large number of signatures where explicit parameters with no co-factor present are in use by an application using libcrypto. For the avoidance of doubt libssl is not vulnerable because explicit parameters are never used. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

CVE-2019-1547 can be explotited with local system access, and requires small amount of user privledges. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 1.0 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Missing Encryption of Sensitive Data

OpenSSL has internal defaults for a directory tree where it

CVE-2019-1552 3.3 - Low - July 30, 2019

OpenSSL has internal defaults for a directory tree where it can find a configuration file as well as certificates used for verification in TLS. This directory is most commonly referred to as OPENSSLDIR, and is configurable with the --prefix / --openssldir configuration options. For OpenSSL versions 1.1.0 and 1.1.1, the mingw configuration targets assume that resulting programs and libraries are installed in a Unix-like environment and the default prefix for program installation as well as for OPENSSLDIR should be '/usr/local'. However, mingw programs are Windows programs, and as such, find themselves looking at sub-directories of 'C:/usr/local', which may be world writable, which enables untrusted users to modify OpenSSL's default configuration, insert CA certificates, modify (or even replace) existing engine modules, etc. For OpenSSL 1.0.2, '/usr/local/ssl' is used as default for OPENSSLDIR on all Unix and Windows targets, including Visual C builds. However, some build instructions for the diverse Windows targets on 1.0.2 encourage you to specify your own --prefix. OpenSSL versions 1.1.1, 1.1.0 and 1.0.2 are affected by this issue. Due to the limited scope of affected deployments this has been assessed as low severity and therefore we are not creating new releases at this time. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

CVE-2019-1552 is exploitable with local system access, and requires small amount of user privledges. This vulnerability is considered to have a low attack complexity. It has an exploitability score of 1.8 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality, with no impact on integrity, and no impact on availability.

Improper Certificate Validation

ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption operation

CVE-2019-1543 7.4 - High - March 06, 2019

ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption operation. RFC 7539 specifies that the nonce value (IV) should be 96 bits (12 bytes). OpenSSL allows a variable nonce length and front pads the nonce with 0 bytes if it is less than 12 bytes. However it also incorrectly allows a nonce to be set of up to 16 bytes. In this case only the last 12 bytes are significant and any additional leading bytes are ignored. It is a requirement of using this cipher that nonce values are unique. Messages encrypted using a reused nonce value are susceptible to serious confidentiality and integrity attacks. If an application changes the default nonce length to be longer than 12 bytes and then makes a change to the leading bytes of the nonce expecting the new value to be a new unique nonce then such an application could inadvertently encrypt messages with a reused nonce. Additionally the ignored bytes in a long nonce are not covered by the integrity guarantee of this cipher. Any application that relies on the integrity of these ignored leading bytes of a long nonce may be further affected. Any OpenSSL internal use of this cipher, including in SSL/TLS, is safe because no such use sets such a long nonce value. However user applications that use this cipher directly and set a non-default nonce length to be longer than 12 bytes may be vulnerable. OpenSSL versions 1.1.1 and 1.1.0 are affected by this issue. Due to the limited scope of affected deployments this has been assessed as low severity and therefore we are not creating new releases at this time. Fixed in OpenSSL 1.1.1c (Affected 1.1.1-1.1.1b). Fixed in OpenSSL 1.1.0k (Affected 1.1.0-1.1.0j).

CVE-2019-1543 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality and integrity, and no impact on availability.

Cryptographic Issues

If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL

CVE-2019-1559 5.9 - Medium - February 27, 2019

If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).

CVE-2019-1559 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Information Exposure Through Discrepancy

A bug exists in the way mod_ssl handled client renegotiations

CVE-2019-0190 7.5 - High - January 30, 2019

A bug exists in the way mod_ssl handled client renegotiations. A remote attacker could send a carefully crafted request that would cause mod_ssl to enter a loop leading to a denial of service. This bug can be only triggered with Apache HTTP Server version 2.4.37 when using OpenSSL version 1.1.1 or later, due to an interaction in changes to handling of renegotiation attempts.

CVE-2019-0190 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks

CVE-2018-5407 4.7 - Medium - November 15, 2018

Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.

CVE-2018-5407 can be explotited with local system access, and requires small amount of user privledges. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 1.0 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Information Exposure Through Discrepancy

The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack

CVE-2018-0734 5.9 - Medium - October 30, 2018

The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).

CVE-2018-0734 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Use of a Broken or Risky Cryptographic Algorithm

The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack

CVE-2018-0735 5.9 - Medium - October 29, 2018

The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).

CVE-2018-0735 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Use of a Broken or Risky Cryptographic Algorithm

The Elliptic Curve Cryptography library (aka sunec or libsunec)

CVE-2018-12438 4.9 - Medium - June 15, 2018

The Elliptic Curve Cryptography library (aka sunec or libsunec) allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.

CVE-2018-12438 is exploitable with physical access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 0.5 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Key Management Errors

** DISPUTED ** cryptlib through 3.4.4

CVE-2018-12433 4.9 - Medium - June 15, 2018

** DISPUTED ** cryptlib through 3.4.4 allows a memory-cache side-channel attack on DSA and ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover a key, the attacker needs access to either the local machine or a different virtual machine on the same physical host. NOTE: the vendor does not include side-channel attacks within its threat model.

CVE-2018-12433 can be explotited with physical access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 0.5 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Key Management Errors

LibTomCrypt through 1.18.1

CVE-2018-12437 4.9 - Medium - June 15, 2018

LibTomCrypt through 1.18.1 allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.

CVE-2018-12437 can be explotited with physical access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 0.5 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Key Management Errors

During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client

CVE-2018-0732 7.5 - High - June 12, 2018

During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2-1.0.2o).

CVE-2018-0732 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

Key Management Errors

The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack

CVE-2018-0737 5.9 - Medium - April 16, 2018

The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key generation process could recover the private key. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2b-1.0.2o).

CVE-2018-0737 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Use of a Broken or Risky Cryptographic Algorithm

Constructed ASN.1 types with a recursive definition (such as

CVE-2018-0739 6.5 - Medium - March 27, 2018

Constructed ASN.1 types with a recursive definition (such as can be found in PKCS7) could eventually exceed the stack given malicious input with excessive recursion. This could result in a Denial Of Service attack. There are no such structures used within SSL/TLS that come from untrusted sources so this is considered safe. Fixed in OpenSSL 1.1.0h (Affected 1.1.0-1.1.0g). Fixed in OpenSSL 1.0.2o (Affected 1.0.2b-1.0.2n).

CVE-2018-0739 can be explotited with network access, requires user interaction. This vulnerability is considered to have a low attack complexity. It has an exploitability score of 2.8 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

Stack Exhaustion

Because of an implementation bug the PA-RISC CRYPTO_memcmp function is effectively reduced to only comparing the least signifi

CVE-2018-0733 5.9 - Medium - March 27, 2018

Because of an implementation bug the PA-RISC CRYPTO_memcmp function is effectively reduced to only comparing the least significant bit of each byte. This allows an attacker to forge messages that would be considered as authenticated in an amount of tries lower than that guaranteed by the security claims of the scheme. The module can only be compiled by the HP-UX assembler, so that only HP-UX PA-RISC targets are affected. Fixed in OpenSSL 1.1.0h (Affected 1.1.0-1.1.0g).

CVE-2018-0733 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality, a high impact on integrity, and no impact on availability.

A denial of service flaw was found in OpenSSL 0.9.8

CVE-2016-8610 7.5 - High - November 13, 2017

A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.

CVE-2016-8610 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

Uncontrolled Resource Consumption ('Resource Exhaustion')

The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might

CVE-2016-6306 5.9 - Medium - September 26, 2016

The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c.

CVE-2016-6306 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a high impact on availability.

Out-of-bounds Read

The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data

CVE-2016-2183 7.5 - High - September 01, 2016

The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack.

CVE-2016-2183 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Information Leak

The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before 1.0.2f does not ensure

CVE-2016-0701 3.7 - Low - February 15, 2016

The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before 1.0.2f does not ensure that prime numbers are appropriate for Diffie-Hellman (DH) key exchange, which makes it easier for remote attackers to discover a private DH exponent by making multiple handshakes with a peer that chose an inappropriate number, as demonstrated by a number in an X9.42 file.

CVE-2016-0701 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a small impact on confidentiality, a small impact on integrity and availability.

Information Leak

The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which

CVE-2015-3195 5.3 - Medium - December 06, 2015

The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which allows remote attackers to obtain sensitive information from process memory by triggering a decoding failure in a PKCS#7 or CMS application.

CVE-2015-3195 can be explotited with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality and integrity, and a small impact on availability.

Information Leak

The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which

CVE-2015-4000 3.7 - Low - May 21, 2015

The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which allows man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the "Logjam" issue.

CVE-2015-4000 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have no impact on confidentiality, with no impact on integrity, and no impact on availability.

Cryptographic Issues

OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which

CVE-2014-0224 7.4 - High - June 05, 2014

OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.

CVE-2014-0224 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is consided to have a high level of attack complexity. It has an exploitability score of 2.2 out of four. The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality and integrity, and no impact on availability.

Inadequate Encryption Strength

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets

CVE-2014-0160 7.5 - High - April 07, 2014

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.CVSS V2 scoring evaluates the impact of the vulnerability on the host where the vulnerability is located. When evaluating the impact of this vulnerability to your organization, take into account the nature of the data that is being protected and act according to your organizations risk acceptance. While CVE-2014-0160 does not allow unrestricted access to memory on the targeted host, a successful exploit does leak information from memory locations which have the potential to contain particularly sensitive information, e.g., cryptographic keys and passwords. Theft of this information could enable other attacks on the information system, the impact of which would depend on the sensitivity of the data and functions of that system.

CVE-2014-0160 is exploitable with network access, and does not require authorization privledges or user interaction. This vulnerability is considered to have a low attack complexity. It has the highest possible exploitability rating (3.9). The potential impact of an exploit of this vulnerability is considered to have a high impact on confidentiality, with no impact on integrity and availability.

Memory Corruption

The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request

CVE-2009-3555 - November 09, 2009

The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue.

Cryptographic Issues