node.js nodejs node.js

Do you want an email whenever new security vulnerabilities are reported in nodejs node.js?

By the Year

In 2022 there have been 10 vulnerabilities in nodejs node.js with an average score of 6.7 out of ten. Last year node.js had 14 security vulnerabilities published. Right now, node.js is on track to have less security vulnerabilities in 2022 than it did last year. Last year, the average CVE base score was greater by 0.58

Year Vulnerabilities Average Score
2022 10 6.66
2021 14 7.24
2020 14 7.83
2019 11 7.26
2018 19 7.00

It may take a day or so for new node.js vulnerabilities to show up in the stats or in the list of recent security vulnerabilties. Additionally vulnerabilities may be tagged under a different product or component name.

Recent nodejs node.js Security Vulnerabilities

The llhttp parser <v14.20.1

CVE-2022-32215 6.5 - Medium - July 14, 2022

The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS).

HTTP Request Smuggling

The llhttp parser <v14.20.1

CVE-2022-32214 6.5 - Medium - July 14, 2022

The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS).

HTTP Request Smuggling

The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and

CVE-2022-32213 6.5 - Medium - July 14, 2022

The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS).

HTTP Request Smuggling

A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.16.0, <18.5.0 due to an insufficient IsAllowedHost check

CVE-2022-32212 8.1 - High - July 14, 2022

A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.16.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.

Shell injection

A cryptographic vulnerability exists on Node.js on linux in versions of 18.x prior to 18.40.0 which allowed a default path for openssl.cnf

CVE-2022-32222 5.3 - Medium - July 14, 2022

A cryptographic vulnerability exists on Node.js on linux in versions of 18.x prior to 18.40.0 which allowed a default path for openssl.cnf that might be accessible under some circumstances to a non-admin user instead of /etc/ssl as was the case in versions prior to the upgrade to OpenSSL 3.

Inadequate Encryption Strength

The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli

CVE-2022-0778 7.5 - High - March 15, 2022

The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).

Infinite Loop

Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 converts SANs (Subject Alternative Names) to a string format

CVE-2021-44532 5.3 - Medium - February 24, 2022

Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 converts SANs (Subject Alternative Names) to a string format. It uses this string to check peer certificates against hostnames when validating connections. The string format was subject to an injection vulnerability when name constraints were used within a certificate chain, allowing the bypass of these name constraints.Versions of Node.js with the fix for this escape SANs containing the problematic characters in order to prevent the injection. This behavior can be reverted through the --security-revert command-line option.

Improper Certificate Validation

Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 did not handle multi-value Relative Distinguished Names correctly

CVE-2021-44533 5.3 - Medium - February 24, 2022

Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 did not handle multi-value Relative Distinguished Names correctly. Attackers could craft certificate subjects containing a single-value Relative Distinguished Name that would be interpreted as a multi-value Relative Distinguished Name, for example, in order to inject a Common Name that would allow bypassing the certificate subject verification.Affected versions of Node.js that do not accept multi-value Relative Distinguished Names and are thus not vulnerable to such attacks themselves. However, third-party code that uses node's ambiguous presentation of certificate subjects may be vulnerable.

Improper Certificate Validation

Due to the formatting logic of the "console.table()" function it was not safe to

CVE-2022-21824 8.2 - High - February 24, 2022

Due to the formatting logic of the "console.table()" function it was not safe to allow user controlled input to be passed to the "properties" parameter while simultaneously passing a plain object with at least one property as the first parameter, which could be "__proto__". The prototype pollution has very limited control, in that it only allows an empty string to be assigned to numerical keys of the object prototype.Node.js >= 12.22.9, >= 14.18.3, >= 16.13.2, and >= 17.3.1 use a null protoype for the object these properties are being assigned to.

Prototype Pollution

Accepting arbitrary Subject Alternative Name (SAN) types, unless a PKI is specifically defined to use a particular SAN type

CVE-2021-44531 7.4 - High - February 24, 2022

Accepting arbitrary Subject Alternative Name (SAN) types, unless a PKI is specifically defined to use a particular SAN type, can result in bypassing name-constrained intermediates. Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 was accepting URI SAN types, which PKIs are often not defined to use. Additionally, when a protocol allows URI SANs, Node.js did not match the URI correctly.Versions of Node.js with the fix for this disable the URI SAN type when checking a certificate against a hostname. This behavior can be reverted through the --security-revert command-line option.

Improper Certificate Validation

Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server

CVE-2021-4044 7.5 - High - December 14, 2021

Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. The exact behaviour will depend on the application but it could result in crashes, infinite loops or other similar incorrect responses. This issue is made more serious in combination with a separate bug in OpenSSL 3.0 that will cause X509_verify_cert() to indicate an internal error when processing a certificate chain. This will occur where a certificate does not include the Subject Alternative Name extension but where a Certificate Authority has enforced name constraints. This issue can occur even with valid chains. By combining the two issues an attacker could induce incorrect, application dependent behaviour. Fixed in OpenSSL 3.0.1 (Affected 3.0.0).

Infinite Loop

Next.js is a React framework

CVE-2021-43803 7.5 - High - December 10, 2021

Next.js is a React framework. In versions of Next.js prior to 12.0.5 or 11.1.3, invalid or malformed URLs could lead to a server crash. In order to be affected by this issue, the deployment must use Next.js versions above 11.1.0 and below 12.0.5, Node.js above 15.0.0, and next start or a custom server. Deployments on Vercel are not affected, along with similar environments where invalid requests are filtered before reaching Next.js. Versions 12.0.5 and 11.1.3 contain patches for this issue.

A flaw was found in c-ares library, where a missing input validation check of host names returned by DNS (Domain Name Servers) can lead to output of wrong hostnames

CVE-2021-3672 5.6 - Medium - November 23, 2021

A flaw was found in c-ares library, where a missing input validation check of host names returned by DNS (Domain Name Servers) can lead to output of wrong hostnames which might potentially lead to Domain Hijacking. The highest threat from this vulnerability is to confidentiality and integrity as well as system availability.

XSS

Node.js before 16.6.0

CVE-2021-22930 9.8 - Critical - October 07, 2021

Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.

Dangling pointer

Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library

CVE-2021-22931 9.8 - Critical - August 16, 2021

Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library.

Improper Input Validation

Node.js before 16.6.1

CVE-2021-22940 7.5 - High - August 16, 2021

Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.

Dangling pointer

If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate

CVE-2021-22939 5.3 - Medium - August 16, 2021

If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate would have been accepted.

Improper Certificate Validation

Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII

CVE-2021-22918 5.3 - Medium - July 12, 2021

Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII. The pointer p is read and increased without checking whether it is beyond pe, with the latter holding a pointer to the end of the buffer. This can lead to information disclosures or crashes. This function can be triggered via uv_getaddrinfo().

Out-of-bounds Read

An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client

CVE-2021-3449 5.9 - Medium - March 25, 2021

An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1-1.1.1j).

NULL Pointer Dereference

Node.js before 10.24.0

CVE-2021-22883 7.5 - High - March 03, 2021

Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory.

Missing Release of Resource after Effective Lifetime

Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes localhost6

CVE-2021-22884 7.5 - High - March 03, 2021

Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes localhost6. When localhost6 is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the localhost6 domain. As long as the attacker uses the localhost6 domain, they can still apply the attack described in CVE-2018-7160.

Calls to EVP_CipherUpdate

CVE-2021-23840 7.5 - High - February 16, 2021

Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).

Integer Overflow or Wraparound

Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation

CVE-2020-8265 8.1 - High - January 06, 2021

Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation. When writing to a TLS enabled socket, node::StreamBase::Write calls node::TLSWrap::DoWrite with a freshly allocated WriteWrap object as first argument. If the DoWrite method does not return an error, this object is passed back to the caller as part of a StreamWriteResult structure. This may be exploited to corrupt memory leading to a Denial of Service or potentially other exploits.

Dangling pointer

Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1

CVE-2020-8287 6.5 - Medium - January 06, 2021

Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling.

HTTP Request Smuggling

The X.509 GeneralName type is a generic type for representing different types of names

CVE-2020-1971 5.9 - Medium - December 08, 2020

The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w).

NULL Pointer Dereference

Versions less than 0.0.6 of the Node.js stringstream module are vulnerable to an out-of-bounds read

CVE-2018-21270 6.5 - Medium - December 03, 2020

Versions less than 0.0.6 of the Node.js stringstream module are vulnerable to an out-of-bounds read because of allocation of uninitialized buffers when a number is passed in the input stream (when using Node.js 4.x).

Out-of-bounds Read

A Node.js application

CVE-2020-8277 7.5 - High - November 19, 2020

A Node.js application that allows an attacker to trigger a DNS request for a host of their choice could trigger a Denial of Service in versions < 15.2.1, < 14.15.1, and < 12.19.1 by getting the application to resolve a DNS record with a larger number of responses. This is fixed in 15.2.1, 14.15.1, and 12.19.1.

Resource Exhaustion

Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users

CVE-2020-8201 7.4 - High - September 18, 2020

Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names.

HTTP Request Smuggling

Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission

CVE-2020-8251 7.5 - High - September 18, 2020

Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission which can make the server unable to accept new connections.

Resource Exhaustion

The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size

CVE-2020-8252 7.8 - High - September 18, 2020

The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes.

Classic Buffer Overflow

napi_get_value_string_*()

CVE-2020-8174 8.1 - High - July 24, 2020

napi_get_value_string_*() allows various kinds of memory corruption in node < 10.21.0, 12.18.0, and < 14.4.0.

Integer underflow

TLS session reuse can lead to host certificate verification bypass in node version < 12.18.0 and < 14.4.0.

CVE-2020-8172 7.4 - High - June 08, 2020

TLS session reuse can lead to host certificate verification bypass in node version < 12.18.0 and < 14.4.0.

Improper Certificate Validation

In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service

CVE-2020-11080 7.5 - High - June 03, 2020

In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service. The proof of concept attack involves a malicious client constructing a SETTINGS frame with a length of 14,400 bytes (2400 individual settings entries) over and over again. The attack causes the CPU to spike at 100%. nghttp2 v1.41.0 fixes this vulnerability. There is a workaround to this vulnerability. Implement nghttp2_on_frame_recv_callback callback, and if received frame is SETTINGS frame and the number of settings entries are large (e.g., > 32), then drop the connection.

Improper Neutralization

An issue was discovered in International Components for Unicode (ICU) for C/C++ through 66.1

CVE-2020-10531 8.8 - High - March 12, 2020

An issue was discovered in International Components for Unicode (ICU) for C/C++ through 66.1. An integer overflow, leading to a heap-based buffer overflow, exists in the UnicodeString::doAppend() function in common/unistr.cpp.

Memory Corruption

The uv_rwlock_t fallback implementation for Windows XP and Server 2003 in libuv before 1.7.4 does not properly prevent threads from releasing the locks of other threads, which

CVE-2014-9748 8.1 - High - February 11, 2020

The uv_rwlock_t fallback implementation for Windows XP and Server 2003 in libuv before 1.7.4 does not properly prevent threads from releasing the locks of other threads, which allows attackers to cause a denial of service (deadlock) or possibly have unspecified other impact by leveraging a race condition.

Race Condition

Improper Certificate Validation in Node.js 10

CVE-2019-15604 7.5 - High - February 07, 2020

Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate

Improper Certificate Validation

HTTP request smuggling in Node.js 10

CVE-2019-15605 9.8 - Critical - February 07, 2020

HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed

HTTP Request Smuggling

Including trailing white space in HTTP header values in Nodejs 10

CVE-2019-15606 9.8 - Critical - February 07, 2020

Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons

Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service

CVE-2019-9516 6.5 - Medium - August 13, 2019

Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.

Allocation of Resources Without Limits or Throttling

Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service

CVE-2019-9518 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.

Allocation of Resources Without Limits or Throttling

Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service

CVE-2019-9517 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.

Allocation of Resources Without Limits or Throttling

Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service

CVE-2019-9515 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.

Allocation of Resources Without Limits or Throttling

Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service

CVE-2019-9514 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.

Allocation of Resources Without Limits or Throttling

Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service

CVE-2019-9513 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.

Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service

CVE-2019-9512 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.

Resource Exhaustion

Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation

CVE-2019-9511 7.5 - High - August 13, 2019

Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.

Allocation of Resources Without Limits or Throttling

In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker

CVE-2019-5737 7.5 - High - March 28, 2019

In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1.

Resource Exhaustion

Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier

CVE-2019-5739 7.5 - High - March 28, 2019

Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier. Node.js 8.0.0 introduced a dedicated server.keepAliveTimeout which defaults to 5 seconds. The behavior in Node.js 6.16.0 and earlier is a potential Denial of Service (DoS) attack vector. Node.js 6.17.0 introduces server.keepAliveTimeout and the 5-second default.

Resource Exhaustion

If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL

CVE-2019-1559 5.9 - Medium - February 27, 2019

If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).

Side Channel Attack

Node.js: All versions prior to Node.js 6.15.0 and 8.14.0: HTTP request splitting: If Node.js can be convinced to use unsanitized user-provided Unicode data for the `path` option of an HTTP request, then data can be provided

CVE-2018-12116 7.5 - High - November 28, 2018

Node.js: All versions prior to Node.js 6.15.0 and 8.14.0: HTTP request splitting: If Node.js can be convinced to use unsanitized user-provided Unicode data for the `path` option of an HTTP request, then data can be provided which will trigger a second, unexpected, and user-defined HTTP request to made to the same server.

Node.js: All versions prior to Node.js 6.15.0: Debugger port 5858 listens on any interface by default: When the debugger is enabled with `node --debug` or `node debug`

CVE-2018-12120 8.1 - High - November 28, 2018

Node.js: All versions prior to Node.js 6.15.0: Debugger port 5858 listens on any interface by default: When the debugger is enabled with `node --debug` or `node debug`, it listens to port 5858 on all interfaces by default. This may allow remote computers to attach to the debug port and evaluate arbitrary JavaScript. The default interface is now localhost. It has always been possible to start the debugger on a specific interface, such as `node --debug=localhost`. The debugger was removed in Node.js 8 and replaced with the inspector, so no versions from 8 and later are vulnerable.

Inclusion of Functionality from Untrusted Control Sphere

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Denial of Service with large HTTP headers: By using a combination of many requests with maximum sized headers (almost 80 KB per connection), and carefully timed completion of the headers, it is possible to cause the HTTP server to abort

CVE-2018-12121 7.5 - High - November 28, 2018

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Denial of Service with large HTTP headers: By using a combination of many requests with maximum sized headers (almost 80 KB per connection), and carefully timed completion of the headers, it is possible to cause the HTTP server to abort from heap allocation failure. Attack potential is mitigated by the use of a load balancer or other proxy layer.

Resource Exhaustion

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Slowloris HTTP Denial of Service: An attacker

CVE-2018-12122 7.5 - High - November 28, 2018

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Slowloris HTTP Denial of Service: An attacker can cause a Denial of Service (DoS) by sending headers very slowly keeping HTTP or HTTPS connections and associated resources alive for a long period of time.

Resource Exhaustion

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Hostname spoofing in URL parser for javascript protocol: If a Node.js application is using url.parse() to determine the URL hostname

CVE-2018-12123 4.3 - Medium - November 28, 2018

Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Hostname spoofing in URL parser for javascript protocol: If a Node.js application is using url.parse() to determine the URL hostname, that hostname can be spoofed by using a mixed case "javascript:" (e.g. "javAscript:") protocol (other protocols are not affected). If security decisions are made about the URL based on the hostname, they may be incorrect.

Improper Input Validation

Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks

CVE-2018-5407 4.7 - Medium - November 15, 2018

Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.

Side Channel Attack

The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack

CVE-2018-0734 5.9 - Medium - October 30, 2018

The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).

Use of a Broken or Risky Cryptographic Algorithm

The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack

CVE-2018-0735 5.9 - Medium - October 29, 2018

The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).

Use of a Broken or Risky Cryptographic Algorithm

In all versions of Node.js 10 prior to 10.9.0, an argument processing flaw can cause `Buffer.alloc()` to return uninitialized memory

CVE-2018-7166 7.5 - High - August 21, 2018

In all versions of Node.js 10 prior to 10.9.0, an argument processing flaw can cause `Buffer.alloc()` to return uninitialized memory. This method is intended to be safe and only return initialized, or cleared, memory. The third argument specifying `encoding` can be passed as a number, this is misinterpreted by `Buffer's` internal "fill" method as the `start` to a fill operation. This flaw may be abused where `Buffer.alloc()` arguments are derived from user input to return uncleared memory blocks that may contain sensitive information.

Use of Uninitialized Resource

In all versions of Node.js prior to 6.14.4, 8.11.4 and 10.9.0 when used with UCS-2 encoding (recognized by Node.js under the names `'ucs2'`, `'ucs-2'`, `'utf16le'` and `'utf-16le'`), `Buffer#write()`

CVE-2018-12115 7.5 - High - August 21, 2018

In all versions of Node.js prior to 6.14.4, 8.11.4 and 10.9.0 when used with UCS-2 encoding (recognized by Node.js under the names `'ucs2'`, `'ucs-2'`, `'utf16le'` and `'utf-16le'`), `Buffer#write()` can be abused to write outside of the bounds of a single `Buffer`. Writes that start from the second-to-last position of a buffer cause a miscalculation of the maximum length of the input bytes to be written.

Memory Corruption

All versions of Node.js 8.x, 9.x, and 10.x are vulnerable and the severity is HIGH

CVE-2018-7161 7.5 - High - June 13, 2018

All versions of Node.js 8.x, 9.x, and 10.x are vulnerable and the severity is HIGH. An attacker can cause a denial of service (DoS) by causing a node server providing an http2 server to crash. This can be accomplished by interacting with the http2 server in a manner that triggers a cleanup bug where objects are used in native code after they are no longer available. This has been addressed by updating the http2 implementation.

Improper Input Validation

All versions of Node.js 9.x and 10.x are vulnerable and the severity is HIGH

CVE-2018-7162 7.5 - High - June 13, 2018

All versions of Node.js 9.x and 10.x are vulnerable and the severity is HIGH. An attacker can cause a denial of service (DoS) by causing a node process which provides an http server supporting TLS server to crash. This can be accomplished by sending duplicate/unexpected messages during the handshake. This vulnerability has been addressed by updating the TLS implementation.

Improper Input Validation

Node.js versions 9.7.0 and later and 10.x are vulnerable and the severity is MEDIUM

CVE-2018-7164 7.5 - High - June 13, 2018

Node.js versions 9.7.0 and later and 10.x are vulnerable and the severity is MEDIUM. A bug introduced in 9.7.0 increases the memory consumed when reading from the network into JavaScript using the net.Socket object directly as a stream. An attacker could use this cause a denial of service by sending tiny chunks of data in short succession. This vulnerability was restored by reverting to the prior behaviour.

Resource Exhaustion

Calling Buffer.fill() or Buffer.alloc() with some parameters can lead to a hang which could result in a Denial of Service

CVE-2018-7167 7.5 - High - June 13, 2018

Calling Buffer.fill() or Buffer.alloc() with some parameters can lead to a hang which could result in a Denial of Service. In order to address this vulnerability, the implementations of Buffer.alloc() and Buffer.fill() were updated so that they zero fill instead of hanging in these cases. All versions of Node.js 6.x (LTS "Boron"), 8.x (LTS "Carbon"), and 9.x are vulnerable. All versions of Node.js 10.x (Current) are NOT vulnerable.

Buffer Overflow

During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client

CVE-2018-0732 7.5 - High - June 12, 2018

During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2-1.0.2o).

Key Management Errors

The `'path'` module in the Node.js 4.x release line contains a potential regular expression denial of service (ReDoS) vector

CVE-2018-7158 7.5 - High - May 17, 2018

The `'path'` module in the Node.js 4.x release line contains a potential regular expression denial of service (ReDoS) vector. The code in question was replaced in Node.js 6.x and later so this vulnerability only impacts all versions of Node.js 4.x. The regular expression, `splitPathRe`, used within the `'path'` module for the various path parsing functions, including `path.dirname()`, `path.extname()` and `path.parse()` was structured in such a way as to allow an attacker to craft a string, that when passed through one of these functions, could take a significant amount of time to evaluate, potentially leading to a full denial of service.

The HTTP parser in all current versions of Node.js ignores spaces in the `Content-Length` header

CVE-2018-7159 5.3 - Medium - May 17, 2018

The HTTP parser in all current versions of Node.js ignores spaces in the `Content-Length` header, allowing input such as `Content-Length: 1 2` to be interpreted as having a value of `12`. The HTTP specification does not allow for spaces in the `Content-Length` value and the Node.js HTTP parser has been brought into line on this particular difference. The security risk of this flaw to Node.js users is considered to be VERY LOW as it is difficult, and may be impossible, to craft an attack that makes use of this flaw in a way that could not already be achieved by supplying an incorrect value for `Content-Length`. Vulnerabilities may exist in user-code that make incorrect assumptions about the potential accuracy of this value compared to the actual length of the data supplied. Node.js users crafting lower-level HTTP utilities are advised to re-check the length of any input supplied after parsing is complete.

Improper Input Validation

The Node.js inspector, in 6.x and later is vulnerable to a DNS rebinding attack which could be exploited to perform remote code execution

CVE-2018-7160 8.8 - High - May 17, 2018

The Node.js inspector, in 6.x and later is vulnerable to a DNS rebinding attack which could be exploited to perform remote code execution. An attack is possible from malicious websites open in a web browser on the same computer, or another computer with network access to the computer running the Node.js process. A malicious website could use a DNS rebinding attack to trick the web browser to bypass same-origin-policy checks and to allow HTTP connections to localhost or to hosts on the local network. If a Node.js process with the debug port active is running on localhost or on a host on the local network, the malicious website could connect to it as a debugger, and get full code execution access.

Authentication Bypass by Spoofing

nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling

CVE-2018-1000168 7.5 - High - May 08, 2018

nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling that can result in segmentation fault leading to denial of service. This attack appears to be exploitable via network client. This vulnerability appears to have been fixed in >= 1.31.1.

Improper Input Validation

Node.js was affected by OpenSSL vulnerability CVE-2017-3737 in regards to the use of SSL_read() due to TLS handshake failure

CVE-2017-15896 9.1 - Critical - December 11, 2017

Node.js was affected by OpenSSL vulnerability CVE-2017-3737 in regards to the use of SSL_read() due to TLS handshake failure. The result was that an active network attacker could send application data to Node.js using the TLS or HTTP2 modules in a way that bypassed TLS authentication and encryption.

Node.js had a bug in versions 8.X and 9.X

CVE-2017-15897 3.1 - Low - December 11, 2017

Node.js had a bug in versions 8.X and 9.X which caused buffers to not be initialized when the encoding for the fill value did not match the encoding specified. For example, 'Buffer.alloc(0x100, "This is not correctly encoded", "hex");' The buffer implementation was updated such that the buffer will be initialized to all zeros in these cases.

Improper Initialization

There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli

CVE-2017-3738 5.9 - Medium - December 07, 2017

There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository.

Information Disclosure

The c-ares function `ares_parse_naptr_reply()`

CVE-2017-1000381 7.5 - High - July 07, 2017

The c-ares function `ares_parse_naptr_reply()`, which is used for parsing NAPTR responses, could be triggered to read memory outside of the given input buffer if the passed in DNS response packet was crafted in a particular way.

Information Disclosure

The crc32_big function in crc32.c in zlib 1.2.8 might

CVE-2016-9843 9.8 - Critical - May 23, 2017

The crc32_big function in crc32.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving big-endian CRC calculation.

The inflateMark function in inflate.c in zlib 1.2.8 might

CVE-2016-9842 8.8 - High - May 23, 2017

The inflateMark function in inflate.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving left shifts of negative integers.

inffast.c in zlib 1.2.8 might

CVE-2016-9841 9.8 - Critical - May 23, 2017

inffast.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic.

inftrees.c in zlib 1.2.8 might

CVE-2016-9840 8.8 - High - May 23, 2017

inftrees.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic.

There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c

CVE-2016-7055 5.9 - Medium - May 04, 2017

There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected.

If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause

CVE-2017-3731 7.5 - High - May 04, 2017

If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k.

Out-of-bounds Read

There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d

CVE-2017-3732 5.9 - Medium - May 04, 2017

There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem.

Information Disclosure

The marked package before 0.3.4 for Node.js allows attackers to cause a denial of service (CPU consumption) via unspecified vectors

CVE-2015-8854 7.5 - High - January 23, 2017

The marked package before 0.3.4 for Node.js allows attackers to cause a denial of service (CPU consumption) via unspecified vectors that trigger a "catastrophic backtracking issue for the em inline rule," aka a "regular expression denial of service (ReDoS)."

Resource Management Errors

Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0

CVE-2016-5180 9.8 - Critical - October 03, 2016

Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot.

Memory Corruption

The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might

CVE-2016-6306 5.9 - Medium - September 26, 2016

The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c.

Out-of-bounds Read

Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a

CVE-2016-6304 7.5 - High - September 26, 2016

Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions.

Memory Leak

crypto/x509/x509_vfy.c in OpenSSL 1.0.2i

CVE-2016-7052 7.5 - High - September 26, 2016

crypto/x509/x509_vfy.c in OpenSSL 1.0.2i allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) by triggering a CRL operation.

NULL Pointer Dereference

The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which

CVE-2016-5172 6.5 - Medium - September 25, 2016

The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which allows remote attackers to obtain sensitive information from arbitrary memory locations via crafted JavaScript code.

Information Disclosure

Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0

CVE-2016-6303 9.8 - Critical - September 16, 2016

Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.

Memory Corruption

The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data

CVE-2016-2183 7.5 - High - September 01, 2016

The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack.

Information Disclosure

The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which

CVE-2016-3956 7.5 - High - July 02, 2016

The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers.

Information Disclosure

The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key

CVE-2016-2178 5.5 - Medium - June 20, 2016

The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack.

Side Channel Attack

The Zone::New function in zone.cc in Google V8 before 5.0.71.47, as used in Google Chrome before 50.0.2661.102, does not properly determine when to expand certain memory allocations, which

CVE-2016-1669 8.8 - High - May 14, 2016

The Zone::New function in zone.cc in Google V8 before 5.0.71.47, as used in Google Chrome before 50.0.2661.102, does not properly determine when to expand certain memory allocations, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via crafted JavaScript code.

Buffer Overflow

Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h

CVE-2016-2105 7.5 - High - May 05, 2016

Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data.

Integer Overflow or Wraparound

The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which

CVE-2016-2107 5.9 - Medium - May 05, 2016

The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169.

Cryptographic Issues

Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string

CVE-2016-0797 7.5 - High - March 03, 2016

Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c.

The MOD_EXP_CTIME_COPY_

CVE-2016-0702 5.1 - Medium - March 03, 2016

The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack.

Information Disclosure

crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature

CVE-2015-3194 7.5 - High - December 06, 2015

crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature that lacks a mask generation function parameter.

NULL Pointer Dereference

The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information

CVE-2015-3193 7.5 - High - December 06, 2015

The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite.

Information Disclosure

The BasicJsonStringifier::SerializeJSArray function in json-stringifier.h in the JSON stringifier in Google V8, as used in Google Chrome before 47.0.2526.73, improperly loads array elements, which

CVE-2015-6764 9.8 - Critical - December 06, 2015

The BasicJsonStringifier::SerializeJSArray function in json-stringifier.h in the JSON stringifier in Google V8, as used in Google Chrome before 47.0.2526.73, improperly loads array elements, which allows remote attackers to cause a denial of service (out-of-bounds memory access) or possibly have unspecified other impact via crafted JavaScript code.

Buffer Overflow

libuv before 0.10.34 does not properly drop group privileges, which

CVE-2015-0278 - May 18, 2015

libuv before 0.10.34 does not properly drop group privileges, which allows context-dependent attackers to gain privileges via unspecified vectors.

Improper Check for Dropped Privileges

OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which

CVE-2014-0224 7.4 - High - June 05, 2014

OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.

Inadequate Encryption Strength

Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146

CVE-2013-6668 - March 05, 2014

Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors.

Stay on top of Security Vulnerabilities

Want an email whenever new vulnerabilities are published for Debian Linux or by nodejs? Click the Watch button to subscribe.

nodejs
Vendor

subscribe