Xen Citrix Xen Xen

Do you want an email whenever new security vulnerabilities are reported in Citrix Xen Xen?

By the Year

In 2022 there have been 56 vulnerabilities in Citrix Xen Xen with an average score of 6.6 out of ten. Last year Xen had 27 security vulnerabilities published. That is, 29 more vulnerabilities have already been reported in 2022 as compared to last year. Last year, the average CVE base score was greater by 0.39

Year Vulnerabilities Average Score
2022 56 6.57
2021 27 6.96
2020 43 6.47
2019 25 7.28
2018 27 7.39

It may take a day or so for new Xen vulnerabilities to show up in the stats or in the list of recent security vulnerabilties. Additionally vulnerabilities may be tagged under a different product or component name.

Recent Citrix Xen Xen Security Vulnerabilities

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42311 7.5 - High - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Memory Leak

Xenstore: Guests can cause Xenstore to not free temporary memory When working on a request of a guest

CVE-2022-42319 6.5 - Medium - November 01, 2022

Xenstore: Guests can cause Xenstore to not free temporary memory When working on a request of a guest, xenstored might need to allocate quite large amounts of memory temporarily. This memory is freed only after the request has been finished completely. A request is regarded to be finished only after the guest has read the response message of the request from the ring page. Thus a guest not reading the response can cause xenstored to not free the temporary memory. This can result in memory shortages causing Denial of Service (DoS) of xenstored.

Memory Leak

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42318 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42317 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42316 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42315 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42314 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42313 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42312 6.5 - Medium - November 01, 2022

Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction

Allocation of Resources Without Limits or Throttling

Xenstore: Guests can crash xenstored via exhausting the stack Xenstored is using recursion for some Xenstore operations (e.g

CVE-2022-42321 6.5 - Medium - November 01, 2022

Xenstore: Guests can crash xenstored via exhausting the stack Xenstored is using recursion for some Xenstore operations (e.g. for deleting a sub-tree of Xenstore nodes). With sufficiently deep nesting levels this can result in stack exhaustion on xenstored, leading to a crash of xenstored.

Stack Exhaustion

Xenstore: Guests can get access to Xenstore nodes of deleted domains Access rights of Xenstore nodes are per domid

CVE-2022-42320 7 - High - November 01, 2022

Xenstore: Guests can get access to Xenstore nodes of deleted domains Access rights of Xenstore nodes are per domid. When a domain is gone, there might be Xenstore nodes left with access rights containing the domid of the removed domain. This is normally no problem, as those access right entries will be corrected when such a node is written later. There is a small time window when a new domain is created, where the access rights of a past domain with the same domid as the new one will be regarded to be still valid, leading to the new domain being able to get access to a node which was meant to be accessible by the removed domain. For this to happen another domain needs to write the node before the newly created domain is being introduced to Xenstore by dom0.

Insufficient Cleanup

Xenstore: Guests can create orphaned Xenstore nodes By creating multiple nodes inside a transaction resulting in an error

CVE-2022-42310 5.5 - Medium - November 01, 2022

Xenstore: Guests can create orphaned Xenstore nodes By creating multiple nodes inside a transaction resulting in an error, a malicious guest can create orphaned nodes in the Xenstore data base, as the cleanup after the error will not remove all nodes already created. When the transaction is committed after this situation, nodes without a valid parent can be made permanent in the data base.

Insufficient Cleanup

Xenstore: Guests can crash xenstored Due to a bug in the fix of XSA-115 a malicious guest can cause xenstored to use a wrong pointer during node creation in an error path

CVE-2022-42309 8.8 - High - November 01, 2022

Xenstore: Guests can crash xenstored Due to a bug in the fix of XSA-115 a malicious guest can cause xenstored to use a wrong pointer during node creation in an error path, resulting in a crash of xenstored or a memory corruption in xenstored causing further damage. Entering the error path can be controlled by the guest e.g. by exceeding the quota value of maximum nodes per domain.

Release of Invalid Pointer or Reference

Xenstore: Guests can create arbitrary number of nodes

CVE-2022-42326 5.5 - Medium - November 01, 2022

Xenstore: Guests can create arbitrary number of nodes via transactions T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] In case a node has been created in a transaction and it is later deleted in the same transaction, the transaction will be terminated with an error. As this error is encountered only when handling the deleted node at transaction finalization, the transaction will have been performed partially and without updating the accounting information. This will enable a malicious guest to create arbitrary number of nodes.

Memory Leak

Xenstore: Guests can create arbitrary number of nodes

CVE-2022-42325 5.5 - Medium - November 01, 2022

Xenstore: Guests can create arbitrary number of nodes via transactions T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] In case a node has been created in a transaction and it is later deleted in the same transaction, the transaction will be terminated with an error. As this error is encountered only when handling the deleted node at transaction finalization, the transaction will have been performed partially and without updating the accounting information. This will enable a malicious guest to create arbitrary number of nodes.

Memory Leak

Oxenstored 32->31 bit integer truncation issues Integers in Ocaml are 63 or 31 bits of signed precision

CVE-2022-42324 5.5 - Medium - November 01, 2022

Oxenstored 32->31 bit integer truncation issues Integers in Ocaml are 63 or 31 bits of signed precision. The Ocaml Xenbus library takes a C uint32_t out of the ring and casts it directly to an Ocaml integer. In 64-bit Ocaml builds this is fine, but in 32-bit builds, it truncates off the most significant bit, and then creates unsigned/signed confusion in the remainder. This in turn can feed a negative value into logic not expecting a negative value, resulting in unexpected exceptions being thrown. The unexpected exception is not handled suitably, creating a busy-loop trying (and failing) to take the bad packet out of the xenstore ring.

Buffer Overflow

Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42323 5.5 - Medium - November 01, 2022

Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Since the fix of XSA-322 any Xenstore node owned by a removed domain will be modified to be owned by Dom0. This will allow two malicious guests working together to create an arbitrary number of Xenstore nodes. This is possible by domain A letting domain B write into domain A's local Xenstore tree. Domain B can then create many nodes and reboot. The nodes created by domain B will now be owned by Dom0. By repeating this process over and over again an arbitrary number of nodes can be created, as Dom0's number of nodes isn't limited by Xenstore quota.

Memory Leak

x86: unintended memory sharing between guests On Intel systems

CVE-2022-42327 7.1 - High - November 01, 2022

x86: unintended memory sharing between guests On Intel systems that support the "virtualize APIC accesses" feature, a guest can read and write the global shared xAPIC page by moving the local APIC out of xAPIC mode. Access to this shared page bypasses the expected isolation that should exist between two guests.

Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-42322 5.5 - Medium - November 01, 2022

Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Since the fix of XSA-322 any Xenstore node owned by a removed domain will be modified to be owned by Dom0. This will allow two malicious guests working together to create an arbitrary number of Xenstore nodes. This is possible by domain A letting domain B write into domain A's local Xenstore tree. Domain B can then create many nodes and reboot. The nodes created by domain B will now be owned by Dom0. By repeating this process over and over again an arbitrary number of nodes can be created, as Dom0's number of nodes isn't limited by Xenstore quota.

Memory Leak

lock order inversion in transitive grant copy handling As part of XSA-226 a missing cleanup call was inserted on an error handling path

CVE-2022-33748 5.6 - Medium - October 11, 2022

lock order inversion in transitive grant copy handling As part of XSA-226 a missing cleanup call was inserted on an error handling path. While doing so, locking requirements were not paid attention to. As a result two cooperating guests granting each other transitive grants can cause locks to be acquired nested within one another, but in respectively opposite order. With suitable timing between the involved grant copy operations this may result in the locking up of a CPU.

Improper Handling of Exceptional Conditions

Arm: unbounded memory consumption for 2nd-level page tables Certain actions require e.g

CVE-2022-33747 3.8 - Low - October 11, 2022

Arm: unbounded memory consumption for 2nd-level page tables Certain actions require e.g. removing pages from a guest's P2M (Physical-to-Machine) mapping. When large pages are in use to map guest pages in the 2nd-stage page tables, such a removal operation may incur a memory allocation (to replace a large mapping with individual smaller ones). These memory allocations are taken from the global memory pool. A malicious guest might be able to cause the global memory pool to be exhausted by manipulating its own P2M mappings.

Resource Exhaustion

P2M pool freeing may take excessively long The P2M pool backing second level address translation for guests may be of significant size

CVE-2022-33746 6.5 - Medium - October 11, 2022

P2M pool freeing may take excessively long The P2M pool backing second level address translation for guests may be of significant size. Therefore its freeing may take more time than is reasonable without intermediate preemption checks. Such checking for the need to preempt was so far missing.

Resource Exhaustion

insufficient TLB flush for x86 PV guests in shadow mode For migration as well as to work around kernels unaware of L1TF (see XSA-273)

CVE-2022-33745 8.8 - High - July 26, 2022

insufficient TLB flush for x86 PV guests in shadow mode For migration as well as to work around kernels unaware of L1TF (see XSA-273), PV guests may be run in shadow paging mode. To address XSA-401, code was moved inside a function in Xen. This code movement missed a variable changing meaning / value between old and new code positions. The now wrong use of the variable did lead to a wrong TLB flush condition, omitting flushes where such are necessary.

Mis-trained branch predictions for return instructions may

CVE-2022-29900 6.5 - Medium - July 12, 2022

Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions.

Information Disclosure

Intel microprocessor generations 6 to 8 are affected by a new Spectre variant

CVE-2022-29901 6.5 - Medium - July 12, 2022

Intel microprocessor generations 6 to 8 are affected by a new Spectre variant that is able to bypass their retpoline mitigation in the kernel to leak arbitrary data. An attacker with unprivileged user access can hijack return instructions to achieve arbitrary speculative code execution under certain microarchitecture-dependent conditions.

Exposure of Resource to Wrong Sphere

network backend may cause Linux netfront to use freed SKBs While adding logic to support XDP (eXpress Data Path), a code label was moved in a way

CVE-2022-33743 7.8 - High - July 05, 2022

network backend may cause Linux netfront to use freed SKBs While adding logic to support XDP (eXpress Data Path), a code label was moved in a way allowing for SKBs having references (pointers) retained for further processing to nevertheless be freed.

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-33742 7.1 - High - July 05, 2022

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).

Information Disclosure

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-33741 7.1 - High - July 05, 2022

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).

Information Disclosure

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-33740 7.1 - High - July 05, 2022

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).

Information Disclosure

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26365 7.1 - High - July 05, 2022

Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).

Information Disclosure

Incomplete cleanup in specific special register write operations for some Intel(R) Processors may

CVE-2022-21166 5.5 - Medium - June 15, 2022

Incomplete cleanup in specific special register write operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.

Insufficient Cleanup

Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may

CVE-2022-21123 5.5 - Medium - June 15, 2022

Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.

Insufficient Cleanup

Incomplete cleanup in specific special register read operations for some Intel(R) Processors may

CVE-2022-21127 5.5 - Medium - June 15, 2022

Incomplete cleanup in specific special register read operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.

Insufficient Cleanup

Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may

CVE-2022-21125 5.5 - Medium - June 15, 2022

Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.

Insufficient Cleanup

x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26364 6.7 - Medium - June 09, 2022

x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe.

x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26363 6.7 - Medium - June 09, 2022

x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe.

x86 pv: Race condition in typeref acquisition Xen maintains a type reference count for pages, in addition to a regular reference count

CVE-2022-26362 6.4 - Medium - June 09, 2022

x86 pv: Race condition in typeref acquisition Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, the logic for acquiring a type reference has a race condition, whereby a safely TLB flush is issued too early and creates a window where the guest can re-establish the read/write mapping before writeability is prohibited.

Race Condition

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26361 7.8 - High - April 05, 2022

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26360 7.8 - High - April 05, 2022

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26359 7.8 - High - April 05, 2022

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-26358 7.8 - High - April 05, 2022

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.

race in VT-d domain ID cleanup Xen domain IDs are up to 15 bits wide

CVE-2022-26357 7 - High - April 05, 2022

race in VT-d domain ID cleanup Xen domain IDs are up to 15 bits wide. VT-d hardware may allow for only less than 15 bits to hold a domain ID associating a physical device with a particular domain. Therefore internally Xen domain IDs are mapped to the smaller value range. The cleaning up of the housekeeping structures has a race, allowing for VT-d domain IDs to be leaked and flushes to be bypassed.

Race Condition

Racy interactions between dirty vram tracking and paging log dirty hypercalls Activation of log dirty mode done by XEN_DMOP_track_dirty_vram (was named HVMOP_track_dirty_vram before Xen 4.9) is racy with ongoing log dirty hypercalls

CVE-2022-26356 5.6 - Medium - April 05, 2022

Racy interactions between dirty vram tracking and paging log dirty hypercalls Activation of log dirty mode done by XEN_DMOP_track_dirty_vram (was named HVMOP_track_dirty_vram before Xen 4.9) is racy with ongoing log dirty hypercalls. A suitably timed call to XEN_DMOP_track_dirty_vram can enable log dirty while another CPU is still in the process of tearing down the structures related to a previously enabled log dirty mode (XEN_DOMCTL_SHADOW_OP_OFF). This is due to lack of mutually exclusive locking between both operations and can lead to entries being added in already freed slots, resulting in a memory leak.

Missing Release of Resource after Effective Lifetime

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23042 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23041 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23040 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23039 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23038 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23037 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains

CVE-2022-23036 7 - High - March 10, 2022

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

Race Condition

Insufficient cleanup of passed-through device IRQs The management of IRQs associated with physical devices exposed to x86 HVM guests involves an iterative operation in particular when cleaning up after the guest's use of the device

CVE-2022-23035 4.6 - Medium - January 25, 2022

Insufficient cleanup of passed-through device IRQs The management of IRQs associated with physical devices exposed to x86 HVM guests involves an iterative operation in particular when cleaning up after the guest's use of the device. In the case where an interrupt is not quiescent yet at the time this cleanup gets invoked, the cleanup attempt may be scheduled to be retried. When multiple interrupts are involved, this scheduling of a retry may get erroneously skipped. At the same time pointers may get cleared (resulting in a de-reference of NULL) and freed (resulting in a use-after-free), while other code would continue to assume them to be valid.

Insufficient Cleanup

A PV guest could DoS Xen while unmapping a grant To address XSA-380, reference counting was introduced for grant mappings for the case where a PV guest

CVE-2022-23034 5.5 - Medium - January 25, 2022

A PV guest could DoS Xen while unmapping a grant To address XSA-380, reference counting was introduced for grant mappings for the case where a PV guest would have the IOMMU enabled. PV guests can request two forms of mappings. When both are in use for any individual mapping, unmapping of such a mapping can be requested in two steps. The reference count for such a mapping would then mistakenly be decremented twice. Underflow of the counters gets detected, resulting in the triggering of a hypervisor bug check.

Integer underflow

arm: guest_physmap_remove_page not removing the p2m mappings The functions to remove one or more entries

CVE-2022-23033 7.8 - High - January 25, 2022

arm: guest_physmap_remove_page not removing the p2m mappings The functions to remove one or more entries from a guest p2m pagetable on Arm (p2m_remove_mapping, guest_physmap_remove_page, and p2m_set_entry with mfn set to INVALID_MFN) do not actually clear the pagetable entry if the entry doesn't have the valid bit set. It is possible to have a valid pagetable entry without the valid bit set when a guest operating system uses set/way cache maintenance instructions. For instance, a guest issuing a set/way cache maintenance instruction, then calling the XENMEM_decrease_reservation hypercall to give back memory pages to Xen, might be able to retain access to those pages even after Xen started reusing them for other purposes.

AuthZ

Rogue backends can cause DoS of guests

CVE-2021-28713 6.5 - Medium - January 05, 2022

Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713

Rogue backends can cause DoS of guests

CVE-2021-28712 6.5 - Medium - January 05, 2022

Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713

Rogue backends can cause DoS of guests

CVE-2021-28711 6.5 - Medium - January 05, 2022

Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713

grant table v2 status pages may remain accessible after de-allocation (take two) Guest get permitted access to certain Xen-owned pages of memory

CVE-2021-28703 7 - High - December 07, 2021

grant table v2 status pages may remain accessible after de-allocation (take two) Guest get permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, get de-allocated when a guest switched (back) from v2 to v1. The freeing of such pages requires that the hypervisor know where in the guest these pages were mapped. The hypervisor tracks only one use within guest space, but racing requests from the guest to insert mappings of these pages may result in any of them to become mapped in multiple locations. Upon switching back from v2 to v1, the guest would then retain access to a page that was freed and perhaps re-used for other purposes. This bug was fortuitously fixed by code cleanup in Xen 4.14, and backported to security-supported Xen branches as a prerequisite of the fix for XSA-378.

issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28709 7.8 - High - November 24, 2021

issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)

Improper Handling of Exceptional Conditions

issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28705 7.8 - High - November 24, 2021

issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)

Improper Handling of Exceptional Conditions

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28708 8.8 - High - November 24, 2021

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).

Command Injection

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28707 8.8 - High - November 24, 2021

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).

Command Injection

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28704 8.8 - High - November 24, 2021

PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).

Command Injection

guests may exceed their designated memory limit When a guest is permitted to have close to 16TiB of memory

CVE-2021-28706 8.6 - High - November 24, 2021

guests may exceed their designated memory limit When a guest is permitted to have close to 16TiB of memory, it may be able to issue hypercalls to increase its memory allocation beyond the administrator established limit. This is a result of a calculation done with 32-bit precision, which may overflow. It would then only be the overflowed (and hence small) number which gets compared against the established upper bound.

Allocation of Resources Without Limits or Throttling

certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons

CVE-2021-28710 8.8 - High - November 21, 2021

certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons, address translation control structures (page tables) may (and, on suitable hardware, by default will) be shared between CPUs, for second-level translation (EPT), and IOMMUs. These page tables are presently set up to always be 4 levels deep. However, an IOMMU may require the use of just 3 page table levels. In such a configuration the lop level table needs to be stripped before inserting the root table's address into the hardware pagetable base register. When sharing page tables, Xen erroneously skipped this stripping. Consequently, the guest is able to write to leaf page table entries.

Improper Privilege Management

PCI devices with RMRRs not deassigned correctly Certain PCI devices in a system might be assigned Reserved Memory Regions (specified

CVE-2021-28702 7.6 - High - October 06, 2021

PCI devices with RMRRs not deassigned correctly Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR"). These are typically used for platform tasks such as legacy USB emulation. If such a device is passed through to a guest, then on guest shutdown the device is not properly deassigned. The IOMMU configuration for these devices which are not properly deassigned ends up pointing to a freed data structure, including the IO Pagetables. Subsequent DMA or interrupts from the device will have unpredictable behaviour, ranging from IOMMU faults to memory corruption.

Improper Privilege Management

Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory

CVE-2021-28701 7.8 - High - September 08, 2021

Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, are de-allocated when a guest switches (back) from v2 to v1. Freeing such pages requires that the hypervisor enforce that no parallel request can result in the addition of a mapping of such a page to a guest. That enforcement was missing, allowing guests to retain access to pages that were freed and perhaps re-used for other purposes. Unfortunately, when XSA-379 was being prepared, this similar issue was not noticed.

Race Condition

xen/arm: No memory limit for dom0less domUs The dom0less feature

CVE-2021-28700 4.9 - Medium - August 27, 2021

xen/arm: No memory limit for dom0less domUs The dom0less feature allows an administrator to create multiple unprivileged domains directly from Xen. Unfortunately, the memory limit from them is not set. This allow a domain to allocate memory beyond what an administrator originally configured.

Allocation of Resources Without Limits or Throttling

inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status

CVE-2021-28699 5.5 - Medium - August 27, 2021

inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing.

long running loops in grant table handling In order to properly monitor resource use

CVE-2021-28698 5.5 - Medium - August 27, 2021

long running loops in grant table handling In order to properly monitor resource use, Xen maintains information on the grant mappings a domain may create to map grants offered by other domains. In the process of carrying out certain actions, Xen would iterate over all such entries, including ones which aren't in use anymore and some which may have been created but never used. If the number of entries for a given domain is large enough, this iterating of the entire table may tie up a CPU for too long, starving other domains or causing issues in the hypervisor itself. Note that a domain may map its own grants, i.e. there is no need for multiple domains to be involved here. A pair of "cooperating" guests may, however, cause the effects to be more severe.

Infinite Loop

grant table v2 status pages may remain accessible after de-allocation Guest get permitted access to certain Xen-owned pages of memory

CVE-2021-28697 7.8 - High - August 27, 2021

grant table v2 status pages may remain accessible after de-allocation Guest get permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, get de-allocated when a guest switched (back) from v2 to v1. The freeing of such pages requires that the hypervisor know where in the guest these pages were mapped. The hypervisor tracks only one use within guest space, but racing requests from the guest to insert mappings of these pages may result in any of them to become mapped in multiple locations. Upon switching back from v2 to v1, the guest would then retain access to a page that was freed and perhaps re-used for other purposes.

Race Condition

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28696 6.8 - Medium - August 27, 2021

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).

AuthZ

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28695 6.8 - Medium - August 27, 2021

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains

CVE-2021-28694 6.8 - Medium - August 27, 2021

IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).

xen/arm: Boot modules are not scrubbed The bootloader will load boot modules (e.g

CVE-2021-28693 5.5 - Medium - June 30, 2021

xen/arm: Boot modules are not scrubbed The bootloader will load boot modules (e.g. kernel, initramfs...) in a temporary area before they are copied by Xen to each domain memory. To ensure sensitive data is not leaked from the modules, Xen must "scrub" them before handing the page over to the allocator. Unfortunately, it was discovered that modules will not be scrubbed on Arm.

inappropriate x86 IOMMU timeout detection / handling IOMMUs process commands issued to them in parallel with the operation of the CPU(s) issuing such commands

CVE-2021-28692 7.1 - High - June 30, 2021

inappropriate x86 IOMMU timeout detection / handling IOMMUs process commands issued to them in parallel with the operation of the CPU(s) issuing such commands. In the current implementation in Xen, asynchronous notification of the completion of such commands is not used. Instead, the issuing CPU spin-waits for the completion of the most recently issued command(s). Some of these waiting loops try to apply a timeout to fail overly-slow commands. The course of action upon a perceived timeout actually being detected is inappropriate: - on Intel hardware guests which did not originally cause the timeout may be marked as crashed, - on AMD hardware higher layer callers would not be notified of the issue, making them continue as if the IOMMU operation succeeded.

Improper Privilege Management

x86: TSX Async Abort protections not restored after S3 This issue relates to the TSX Async Abort speculative security vulnerability

CVE-2021-28690 6.5 - Medium - June 29, 2021

x86: TSX Async Abort protections not restored after S3 This issue relates to the TSX Async Abort speculative security vulnerability. Please see https://xenbits.xen.org/xsa/advisory-305.html for details. Mitigating TAA by disabling TSX (the default and preferred option) requires selecting a non-default setting in MSR_TSX_CTRL. This setting isn't restored after S3 suspend.

x86: Speculative vulnerabilities with bare (non-shim) 32-bit PV guests 32-bit x86 PV guest kernels run in ring 1

CVE-2021-28689 5.5 - Medium - June 11, 2021

x86: Speculative vulnerabilities with bare (non-shim) 32-bit PV guests 32-bit x86 PV guest kernels run in ring 1. At the time when Xen was developed, this area of the i386 architecture was rarely used, which is why Xen was able to use it to implement paravirtualisation, Xen's novel approach to virtualization. In AMD64, Xen had to use a different implementation approach, so Xen does not use ring 1 to support 64-bit guests. With the focus now being on 64-bit systems, and the availability of explicit hardware support for virtualization, fixing speculation issues in ring 1 is not a priority for processor companies. Indirect Branch Restricted Speculation (IBRS) is an architectural x86 extension put together to combat speculative execution sidechannel attacks, including Spectre v2. It was retrofitted in microcode to existing CPUs. For more details on Spectre v2, see: http://xenbits.xen.org/xsa/advisory-254.html However, IBRS does not architecturally protect ring 0 from predictions learnt in ring 1. For more details, see: https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation Similar situations may exist with other mitigations for other kinds of speculative execution attacks. The situation is quite likely to be similar for speculative execution attacks which have yet to be discovered, disclosed, or mitigated.

Buffer Overflow

HVM soft-reset crashes toolstack libxl requires all data structures passed across its public interface to be initialized before use and disposed of afterwards by calling a specific set of functions

CVE-2021-28687 5.5 - Medium - June 11, 2021

HVM soft-reset crashes toolstack libxl requires all data structures passed across its public interface to be initialized before use and disposed of afterwards by calling a specific set of functions. Many internal data structures also require this initialize / dispose discipline, but not all of them. When the "soft reset" feature was implemented, the libxl__domain_suspend_state structure didn't require any initialization or disposal. At some point later, an initialization function was introduced for the structure; but the "soft reset" path wasn't refactored to call the initialization function. When a guest nwo initiates a "soft reboot", uninitialized data structure leads to an assert() when later code finds the structure in an unexpected state. The effect of this is to crash the process monitoring the guest. How this affects the system depends on the structure of the toolstack. For xl, this will have no security-relevant effect: every VM has its own independent monitoring process, which contains no state. The domain in question will hang in a crashed state, but can be destroyed by `xl destroy` just like any other non-cooperating domain. For daemon-based toolstacks linked against libxl, such as libvirt, this will crash the toolstack, losing the state of any in-progress operations (localized DoS), and preventing further administrator operations unless the daemon is configured to restart automatically (system-wide DoS). If crashes "leak" resources, then repeated crashes could use up resources, also causing a system-wide DoS.

Missing Initialization of Resource

An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV

CVE-2021-28038 6.5 - Medium - March 05, 2021

An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV. A certain part of the netback driver lacks necessary treatment of errors such as failed memory allocations (as a result of changes to the handling of grant mapping errors). A host OS denial of service may occur during misbehavior of a networking frontend driver. NOTE: this issue exists because of an incomplete fix for CVE-2021-26931.

Allocation of Resources Without Limits or Throttling

An issue was discovered in the Linux kernel 5.9.x through 5.11.3, as used with Xen

CVE-2021-28039 6.5 - Medium - March 05, 2021

An issue was discovered in the Linux kernel 5.9.x through 5.11.3, as used with Xen. In some less-common configurations, an x86 PV guest OS user can crash a Dom0 or driver domain via a large amount of I/O activity. The issue relates to misuse of guest physical addresses when a configuration has CONFIG_XEN_UNPOPULATED_ALLOC but not CONFIG_XEN_BALLOON_MEMORY_HOTPLUG.

Incorrect Calculation of Buffer Size

An issue was discovered in Xen through 4.11.x

CVE-2021-27379 7.8 - High - February 18, 2021

An issue was discovered in Xen through 4.11.x, allowing x86 Intel HVM guest OS users to achieve unintended read/write DMA access, and possibly cause a denial of service (host OS crash) or gain privileges. This occurs because a backport missed a flush, and thus IOMMU updates were not always correct. NOTE: this issue exists because of an incomplete fix for CVE-2020-15565.

An issue was discovered in Xen 4.9 through 4.14.x

CVE-2021-26933 5.5 - Medium - February 17, 2021

An issue was discovered in Xen 4.9 through 4.14.x. On Arm, a guest is allowed to control whether memory accesses are bypassing the cache. This means that Xen needs to ensure that all writes (such as the ones during scrubbing) have reached the memory before handing over the page to a guest. Unfortunately, the operation to clean the cache is happening before checking if the page was scrubbed. Therefore there is no guarantee when all the writes will reach the memory.

An issue was discovered in Xen 4.12.3 through 4.12.4 and 4.13.1 through 4.14.x

CVE-2021-3308 5.5 - Medium - January 26, 2021

An issue was discovered in Xen 4.12.3 through 4.12.4 and 4.13.1 through 4.14.x. An x86 HVM guest with PCI pass through devices can force the allocation of all IDT vectors on the system by rebooting itself with MSI or MSI-X capabilities enabled and entries setup. Such reboots will leak any vectors used by the MSI(-X) entries that the guest might had enabled, and hence will lead to vector exhaustion on the system, not allowing further PCI pass through devices to work properly. HVM guests with PCI pass through devices can mount a Denial of Service (DoS) attack affecting the pass through of PCI devices to other guests or the hardware domain. In the latter case, this would affect the entire host.

An issue was discovered in Xen through 4.14.x

CVE-2020-29479 8.8 - High - December 15, 2020

An issue was discovered in Xen through 4.14.x. In the Ocaml xenstored implementation, the internal representation of the tree has special cases for the root node, because this node has no parent. Unfortunately, permissions were not checked for certain operations on the root node. Unprivileged guests can get and modify permissions, list, and delete the root node. (Deleting the whole xenstore tree is a host-wide denial of service.) Achieving xenstore write access is also possible. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.

AuthZ

An issue was discovered in Xen through 4.14.x

CVE-2020-29480 2.3 - Low - December 15, 2020

An issue was discovered in Xen through 4.14.x. Neither xenstore implementation does any permission checks when reporting a xenstore watch event. A guest administrator can watch the root xenstored node, which will cause notifications for every created, modified, and deleted key. A guest administrator can also use the special watches, which will cause a notification every time a domain is created and destroyed. Data may include: number, type, and domids of other VMs; existence and domids of driver domains; numbers of virtual interfaces, block devices, vcpus; existence of virtual framebuffers and their backend style (e.g., existence of VNC service); Xen VM UUIDs for other domains; timing information about domain creation and device setup; and some hints at the backend provisioning of VMs and their devices. The watch events do not contain values stored in xenstore, only key names. A guest administrator can observe non-sensitive domain and device lifecycle events relating to other guests. This information allows some insight into overall system configuration (including the number and general nature of other guests), and configuration of other guests (including the number and general nature of other guests' devices). This information might be commercially interesting or might make other attacks easier. There is not believed to be exposure of sensitive data. Specifically, there is no exposure of VNC passwords, port numbers, pathnames in host and guest filesystems, cryptographic keys, or within-guest data.

Side Channel Attack

An issue was discovered in Xen through 4.14.x

CVE-2020-29481 8.8 - High - December 15, 2020

An issue was discovered in Xen through 4.14.x. Access rights of Xenstore nodes are per domid. Unfortunately, existing granted access rights are not removed when a domain is being destroyed. This means that a new domain created with the same domid will inherit the access rights to Xenstore nodes from the previous domain(s) with the same domid. Because all Xenstore entries of a guest below /local/domain/<domid> are being deleted by Xen tools when a guest is destroyed, only Xenstore entries of other guests still running are affected. For example, a newly created guest domain might be able to read sensitive information that had belonged to a previously existing guest domain. Both Xenstore implementations (C and Ocaml) are vulnerable.

Exposure of Resource to Wrong Sphere

An issue was discovered in Xen through 4.14.x

CVE-2020-29482 6 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. A guest may access xenstore paths via absolute paths containing a full pathname, or via a relative path, which implicitly includes /local/domain/$DOMID for their own domain id. Management tools must access paths in guests' namespaces, necessarily using absolute paths. oxenstored imposes a pathname limit that is applied solely to the relative or absolute path specified by the client. Therefore, a guest can create paths in its own namespace which are too long for management tools to access. Depending on the toolstack in use, a malicious guest administrator might cause some management tools and debugging operations to fail. For example, a guest administrator can cause "xenstore-ls -r" to fail. However, a guest administrator cannot prevent the host administrator from tearing down the domain. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.

Untrusted Path

An issue was discovered in Xen through 4.14.x

CVE-2020-29483 6.5 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. Xenstored and guests communicate via a shared memory page using a specific protocol. When a guest violates this protocol, xenstored will drop the connection to that guest. Unfortunately, this is done by just removing the guest from xenstored's internal management, resulting in the same actions as if the guest had been destroyed, including sending an @releaseDomain event. @releaseDomain events do not say that the guest has been removed. All watchers of this event must look at the states of all guests to find the guest that has been removed. When an @releaseDomain is generated due to a domain xenstored protocol violation, because the guest is still running, the watchers will not react. Later, when the guest is actually destroyed, xenstored will no longer have it stored in its internal data base, so no further @releaseDomain event will be sent. This can lead to a zombie domain; memory mappings of that guest's memory will not be removed, due to the missing event. This zombie domain will be cleaned up only after another domain is destroyed, as that will trigger another @releaseDomain event. If the device model of the guest that violated the Xenstore protocol is running in a stub-domain, a use-after-free case could happen in xenstored, after having removed the guest from its internal data base, possibly resulting in a crash of xenstored. A malicious guest can block resources of the host for a period after its own death. Guests with a stub domain device model can eventually crash xenstored, resulting in a more serious denial of service (the prevention of any further domain management operations). Only the C variant of Xenstore is affected; the Ocaml variant is not affected. Only HVM guests with a stubdom device model can cause a serious DoS.

Dangling pointer

An issue was discovered in Xen through 4.14.x

CVE-2020-29484 6 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. When a Xenstore watch fires, the xenstore client that registered the watch will receive a Xenstore message containing the path of the modified Xenstore entry that triggered the watch, and the tag that was specified when registering the watch. Any communication with xenstored is done via Xenstore messages, consisting of a message header and the payload. The payload length is limited to 4096 bytes. Any request to xenstored resulting in a response with a payload longer than 4096 bytes will result in an error. When registering a watch, the payload length limit applies to the combined length of the watched path and the specified tag. Because watches for a specific path are also triggered for all nodes below that path, the payload of a watch event message can be longer than the payload needed to register the watch. A malicious guest that registers a watch using a very large tag (i.e., with a registration operation payload length close to the 4096 byte limit) can cause the generation of watch events with a payload length larger than 4096 bytes, by writing to Xenstore entries below the watched path. This will result in an error condition in xenstored. This error can result in a NULL pointer dereference, leading to a crash of xenstored. A malicious guest administrator can cause xenstored to crash, leading to a denial of service. Following a xenstored crash, domains may continue to run, but management operations will be impossible. Only C xenstored is affected, oxenstored is not affected.

NULL Pointer Dereference

An issue was discovered in Xen 4.6 through 4.14.x

CVE-2020-29485 5.5 - Medium - December 15, 2020

An issue was discovered in Xen 4.6 through 4.14.x. When acting upon a guest XS_RESET_WATCHES request, not all tracking information is freed. A guest can cause unbounded memory usage in oxenstored. This can lead to a system-wide DoS. Only systems using the Ocaml Xenstored implementation are vulnerable. Systems using the C Xenstored implementation are not vulnerable.

Memory Leak

An issue was discovered in Xen through 4.14.x

CVE-2020-29486 6 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. Nodes in xenstore have an ownership. In oxenstored, a owner could give a node away. However, node ownership has quota implications. Any guest can run another guest out of quota, or create an unbounded number of nodes owned by dom0, thus running xenstored out of memory A malicious guest administrator can cause a denial of service against a specific guest or against the whole host. All systems using oxenstored are vulnerable. Building and using oxenstored is the default in the upstream Xen distribution, if the Ocaml compiler is available. Systems using C xenstored are not vulnerable.

Allocation of Resources Without Limits or Throttling

An issue was discovered in Xen through 4.14.x

CVE-2020-29566 5.5 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. When they require assistance from the device model, x86 HVM guests must be temporarily de-scheduled. The device model will signal Xen when it has completed its operation, via an event channel, so that the relevant vCPU is rescheduled. If the device model were to signal Xen without having actually completed the operation, the de-schedule / re-schedule cycle would repeat. If, in addition, Xen is resignalled very quickly, the re-schedule may occur before the de-schedule was fully complete, triggering a shortcut. This potentially repeating process uses ordinary recursive function calls, and thus could result in a stack overflow. A malicious or buggy stubdomain serving a HVM guest can cause Xen to crash, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are affected. Arm systems are not affected. Only x86 stubdomains serving HVM guests can exploit the vulnerability.

Stack Exhaustion

An issue was discovered in Xen 4.14.x

CVE-2020-29567 6.2 - Medium - December 15, 2020

An issue was discovered in Xen 4.14.x. When moving IRQs between CPUs to distribute the load of IRQ handling, IRQ vectors are dynamically allocated and de-allocated on the relevant CPUs. De-allocation has to happen when certain constraints are met. If these conditions are not met when first checked, the checking CPU may send an interrupt to itself, in the expectation that this IRQ will be delivered only after the condition preventing the cleanup has cleared. For two specific IRQ vectors, this expectation was violated, resulting in a continuous stream of self-interrupts, which renders the CPU effectively unusable. A domain with a passed through PCI device can cause lockup of a physical CPU, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only guests with physical PCI devices passed through to them can exploit the vulnerability.

Allocation of Resources Without Limits or Throttling

An issue was discovered in Xen through 4.14.x

CVE-2020-29568 6.5 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. Some OSes (such as Linux, FreeBSD, and NetBSD) are processing watch events using a single thread. If the events are received faster than the thread is able to handle, they will get queued. As the queue is unbounded, a guest may be able to trigger an OOM in the backend. All systems with a FreeBSD, Linux, or NetBSD (any version) dom0 are vulnerable.

Allocation of Resources Without Limits or Throttling

An issue was discovered in the Linux kernel through 5.10.1, as used with Xen through 4.14.x

CVE-2020-29569 8.8 - High - December 15, 2020

An issue was discovered in the Linux kernel through 5.10.1, as used with Xen through 4.14.x. The Linux kernel PV block backend expects the kernel thread handler to reset ring->xenblkd to NULL when stopped. However, the handler may not have time to run if the frontend quickly toggles between the states connect and disconnect. As a consequence, the block backend may re-use a pointer after it was freed. A misbehaving guest can trigger a dom0 crash by continuously connecting / disconnecting a block frontend. Privilege escalation and information leaks cannot be ruled out. This only affects systems with a Linux blkback.

Dangling pointer

An issue was discovered in Xen through 4.14.x

CVE-2020-29570 6.2 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. Recording of the per-vCPU control block mapping maintained by Xen and that of pointers into the control block is reversed. The consumer assumes, seeing the former initialized, that the latter are also ready for use. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system.

Allocation of Resources Without Limits or Throttling

An issue was discovered in Xen through 4.14.x

CVE-2020-29571 6.2 - Medium - December 15, 2020

An issue was discovered in Xen through 4.14.x. A bounds check common to most operation time functions specific to FIFO event channels depends on the CPU observing consistent state. While the producer side uses appropriately ordered writes, the consumer side isn't protected against re-ordered reads, and may hence end up de-referencing a NULL pointer. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. Only Arm systems may be vulnerable. Whether a system is vulnerable depends on the specific CPU. x86 systems are not vulnerable.

NULL Pointer Dereference

An issue was discovered in Xen through 4.14.x

CVE-2020-29040 8.8 - High - November 24, 2020

An issue was discovered in Xen through 4.14.x allowing x86 HVM guest OS users to cause a denial of service (stack corruption), cause a data leak, or possibly gain privileges because of an off-by-one error. NOTE: this issue is caused by an incorrect fix for CVE-2020-27671.

Memory Corruption

Xen through 4.14.x allows guest OS administrators to obtain sensitive information (such as AES keys from outside the guest)

CVE-2020-28368 4.4 - Medium - November 10, 2020

Xen through 4.14.x allows guest OS administrators to obtain sensitive information (such as AES keys from outside the guest) via a side-channel attack on a power/energy monitoring interface, aka a "Platypus" attack. NOTE: there is only one logically independent fix: to change the access control for each such interface in Xen.

AuthZ

An issue was discovered in Xen through 4.14.x

CVE-2020-27670 7.8 - High - October 22, 2020

An issue was discovered in Xen through 4.14.x allowing x86 guest OS users to cause a denial of service (data corruption), cause a data leak, or possibly gain privileges because an AMD IOMMU page-table entry can be half-updated.

Insufficient Verification of Data Authenticity

Stay on top of Security Vulnerabilities

Want an email whenever new vulnerabilities are published for Debian Linux or by Citrix Xen? Click the Watch button to subscribe.

Citrix Xen
Vendor

subscribe